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ABSTRACT 

A linear point design methodology for minimizing the error 
in on-line Kalman filter-based aircraft engine performance 
estimation applications is presented. This technique specifically 
addresses the underdetermined estimation problem, where there 
are more unknown parameters than available sensor 
measurements. A systematic approach is applied to produce a 
model tuning parameter vector of appropriate dimension to 
enable estimation by a Kalman filter, while minimizing the 
estimation error in the parameters of interest. Tuning parameter 
selection is performed using a multi-variable iterative search 
routine which seeks to minimize the theoretical mean-squared 
estimation error. This paper derives theoretical Kalman filter 
estimation error bias and variance values at steady-state 
operating conditions, and presents the tuner selection routine 
applied to minimize these values. Results from the application 
of the technique to an aircraft engine simulation are presented 
and compared to the conventional approach of tuner selection. 
Experimental simulation results are found to be in agreement 
with theoretical predictions. The new methodology is shown to 
yield a significant improvement in on-line engine performance 
estimation accuracy. 

 
INTRODUCTION  

An emerging approach in the field of aircraft engine 
controls and health management is the inclusion of real-time 
on-board models for the in-flight estimation of engine 
performance variations [1,2,3]. This technology, typically 
based on Kalman filter concepts, enables the estimation of 
unmeasured engine performance parameters which can be 
directly utilized by controls, prognostics and health 
management applications. A challenge which complicates this 
practice is the fact that an aircraft engine’s performance is 

affected by its level of degradation, generally described in 
terms of unmeasurable health parameters such as efficiencies 
and flow capacities related to each major engine module. 
Through Kalman filter-based estimation techniques, the level of 
engine performance degradation can be estimated, given that 
there are at least as many sensors as parameters to be estimated. 
However, in an aircraft engine the number of sensors available 
is typically less than the number of health parameters 
presenting an under-determined estimation problem. A common 
approach to address this shortcoming is to estimate a sub-set of 
the health parameters, referred to as model tuning parameters. 
While this approach enables on-line Kalman filter-based 
estimation, it can result in “smearing” the effects of un-
estimated health parameters onto those which are estimated, 
and in turn introduce error in the accuracy of overall model-
based performance estimation applications. Recently, Litt [4] 
presented an approach based on singular value decomposition 
which selects a model tuning parameter vector of low-enough 
dimension to be estimated by a Kalman filter. The model tuning 
parameter vector, q, was constructed as a linear combination of 
all health parameters, h, given by 

 
q = V*h (1) 

 
where the transformation matrix, V*, is selected applying 
singular value decomposition to capture the overall effect of the 
larger set of health parameters on the engine variables as 
closely as possible in the least squares sense. In this paper a 
new linear point design technique which applies a systematic 
approach to optimal tuning parameter selection will be 
presented. This technique, like the one presented in Ref. [4], 
also defines a transformation matrix, V*, used to construct a 
tuning parameter vector which is a linear combination of all 
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health parameters, and of low enough dimension to enable 
Kalman filter estimation. The new approach optimally selects 
the transformation matrix, V*, to minimize the theoretical 
steady-state estimation error in the engine performance 
parameters of interest. There is no known closed form solution 
for optimally selecting V* to satisfy this objective. Therefore, a 
multivariable iterative search routine is applied to perform this 
function.  

The remaining sections of this paper are organized as 
follows. First, the mathematical formulation of the parameter 
estimation problem is presented, and theoretical estimation 
error values are derived assuming linear, steady-state operating 
conditions. The theoretical estimation error information is 
directly used by the iterative search routine applied to optimally 
select the Kalman filter tuning parameter vector, which is 
described next. Example estimation results from the application 
of the new methodology to an aircraft turbofan engine 
simulation are then presented and compared to the conventional 
approach of tuning parameter selection, the SVD tuner 
selection approach presented in Ref. [4], and the maximum a 
posteriori performance estimation approach commonly applied 
for off-line (ground-based) aircraft engine gas path analysis 
applications [5,6]. After the example, there is a discussion of 
practical considerations for applying the method, and a 
discussion of future work. Finally, conclusions are presented. 

NOMENCLATURE 
A,  Axh, Axq 
B, Bxh, Bxq, 
C, Cxh, Cxq, 
D, F, Fxh, Fxq, 
G,  L, M, N 

system matrices 

C-MAPSS Commercial Modular Aero-Propulsion System 
Simulation 

Fn net thrust 
Gxh, Gx, Gh, Gz estimation bias matrices 
H matrix which relates health parameter effects to 

steady-state engine outputs 
HPC high pressure compressor 
HPT high pressure turbine 
I identity matrix 
K∞ Kalman filter gain 
LPC low pressure compressor 
LPT low pressure turbine 
MAP maximum a posteriori  
Nf fan speed 
Nc core speed 
Ph, Pz health & auxiliary parameter covariance matrices 
P24 HPC inlet total pressure 
Ps30 HPC exit static pressure 

kzkqxkhx
PPP ,ˆ,ˆˆ,ˆˆ

,,   covariance matrices of estimated parameters 

P∞ Kalman filter state estimation covariance matrix 
Q, Qxh, Qxq process noise covariance matrices 
R measurement noise covariance matrix 
SmLPC LPC stall margin 
T24 HPC inlet total temperature 
T30 HPC exit total temperature 

T40 combustor exit temperature 
T48 exhaust gas temperature 
T50 LPT exit temperature 
V* transformation matrix relating hk to qk 
VSV variable stator vane 
VBV variable bleed valve 
Wf fuel flow 
Wz auxiliary parameter weighting matrix 
hk health parameter vector 
qk Kalman filter tuning parameter vector 
uk actuator command vector 
vk measurement noise vector 
wk, wh,k, wxh,k process noise vectors 
xk state vector 
xxh,k augmented state vector (xk and hk) 
xxq,k reduced order state vector (xk and qk) 
yk vector of measured outputs 
zk vector of unmeasured (auxiliary) outputs 
εxq,k residual vector (estimate minus its expected value) 
  

Subscripts  
k discrete time step index 
xh augmented state vector (x and h) 
xq reduced order state vector (x and q) 
ss steady-state value 
  

Superscripts  
† pseudo-inverse 
^ estimated value 
~ error value 
– mean value 
T transpose 
  

Operators  
E[·] expected value of argument 
tr{·} trace of matrix 
SSEE(·) sum of squared estimation errors 
WSSEE(·) weighted sum of squared estimation errors 
|| · ||F matrix Frobenius norm 

PROBLEM FORMULATION 
The discrete linear time-invariant engine state space 

equations about a linear design point are given as 
 

1k k k k k

k k k k k

k k k k

x Ax Bu Lh w

y Cx Du Mh v

z Fx Gu Nh

+ = + + +
= + + +
= + +

 (2) 

 
where k is the time index, x is the vector of state variables, u is 
the vector of control inputs, y is the vector of measured outputs, 
and z is the vector of auxiliary (unmeasured) model outputs. 
The vector h represents the engine health parameters, which 
induce shifts in other variables as the health parameters deviate 
from their nominal values. The vectors w and v are uncorrelated 
zero-mean white noise input sequences. Q will be used to 
denote the covariance of w, and R to denote the covariance of 
v. The matrices A, B, C, D, F, G, L, M, and N are of appropriate 
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dimension. The health parameters, represented by the vector h, 
are unknown inputs to the system. They may be treated as a set 
of biases, and are thus modeled without dynamics. With this 
interpretation Eq. (2) can be written as: 
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The vector wxh is zero-mean white noise associated with the 
augmented state vector, [xT hT]T, with a covariance of Qxh. wxh 
consists of the original state process noise, w, concatenated 
with the process noise associated with the health parameter 
vector, wh. 

,
,

k
xh k

h k

w
w

w

 
=  
 

 (4) 

 
The eigenvalues of Axh consist of the original eigenvalues 

of A plus an additional dim(h) eigenvalues located at 1.0 on the 
unit circle due to the augmentation. Thus, the new augmented 
system given in Eq. (3) has at least as many eigenvalues located 
on the unit circle as there are elements of h. Once the h vector 
is appended to the state vector, it may be directly estimated, 
provided that the realization in Eq. (3) is observable. Using this 
formulation, the number of health parameters that can be 
estimated is limited to the number of sensors, the dimension of 
y [7]. Since in an aircraft gas turbine engine there are usually 
fewer sensors than health parameters, the problem becomes one 
of choosing the best set of tuners for the application. This paper 
presents a systematic methodology for the optimal selection of 
a model tuning parameter vector, q, of low-enough dimension 
to be estimated by a Kalman filter, while minimizing the 
estimation error in the model variables of interest. The 
following sub-sections will cover the steps in the problem 
setup. This includes construction of the reduced-order state 
space model, formulation of the Kalman filter estimator, 
calculation of the mean sum of squared estimation errors, and 
optimal selection of the transformation matrix to minimize the 
estimation error. 

Reduced-Order State Space Model  
The model tuning parameter vector, q, is constructed as a 

linear combination of all health parameters, h, given by 
 

*q V h=   (5) 

 

where q ∈ mℝ , h ∈ pℝ , m < p, and V* is an m × p 
transformation matrix of rank m, applied to construct the tuning 
parameter vector. An approximation of the health parameter 

vector, ĥ , can be obtained as 
 

*†ĥ V q=  (6) 

 
where V*† is the pseudo-inverse of V*.  Substituting Eq. (6) into 
Eq. (3) yields the following reduced order state space equations 
which will be used to formulate the Kalman filter 
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The state process noise, wxq, and its associated covariance, Qxq, 
for the reduced order system are calculated as 

 

, ,* *
,

* *

0 0

0 0

0 0

0 0

k
xq k xh k

h k

T

xq xh

wI I
w w

wV V

I I
Q Q

V V

    
= =     
     

   
=    
   

 (8) 

 
Kalman Filter Formulation  

In this study, steady-state Kalman filtering is applied. This 
means that while the Kalman filter is a dynamic system, the 
state estimation error covariance matrix and the Kalman gain 
matrix are invariant—instead of updating these matrices each 
time step they are held constant. Given the reduced order linear 
state space equations shown in Eq. (7), the state estimation 
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error covariance matrix, P∞, is calculated by solving the 
following Ricatti equation [8]: 

 
1( )T T T

xq xq xq xq xq xq

T
xq xq xq

P A P A A P C C P C R

C P A Q

−
∞ ∞ ∞ ∞

∞

= − +

× +

…
 (9) 

 
The steady-state Kalman filter gain, K∞, can then be calculated 
as follows [8] 
 

1( )T T
xq xq xqK P C C P C R −

∞ ∞ ∞= +  (10) 

 
and, assuming steady-state, open-loop operation (u = 0), the 
Kalman filter estimator takes the following form 
 

( ), , 1 , 1ˆ ˆ ˆxq k xq xq k k xq xq xq kx A x K y C A x− ∞ −= + −  (11) 

 
The reduced order state vector estimate,

xqx̂ , produced by Eq. 

(11) can be used to produce an estimate of the augmented state 
vector, and the auxiliary parameter vector as follows 
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=  
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 (12) 

 
Analytical Derivation of Estimation Error  

The estimation errors in 
kxhx ,ˆ  and 

kẑ  are defined as the 

difference between the estimated and actual values 
 

, , ,ˆ

ˆ
xh k xh k xh k

k k k

x x x

z z z

= −

= −

ɶ

ɶ
 (13) 

 
Due to the under-determined nature of the estimation problem, 
it will be impossible for the Kalman filter estimator to 
completely restore all information when transforming q̂  into 

ĥ . As such, the Kalman filter will be a biased estimator (i.e. the 
expected values of 

kxhx ,
~  and 

kz~ will be non-zero). The 

estimation errors can be considered to consist of two 
components: An estimation error bias, and an estimation 
variance. The estimation error bias vectors are equivalent to the 
mean estimation error vectors defined as 
 

, , , ,
ˆ

ˆ

xh k xh k xh k xh k

k k k k

x E x E x x

z E z E z z

   = = −   

= = −      

ɶ ɶ

ɶ ɶ
 (14) 

 

where the operator E[●] represents the expected value of the 
argument. The variance of the estimates can be found by 
constructing their respective estimation covariance matrices 
 

( )( )
( )( )

ˆ , , , ,ˆ ,
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ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

T

xh k xh k xh k xh kxh k

T

z k k k k k

P E x E x x E x

P E z E z z E z

    = − −     

 = − −        

 (15) 

 
Diagonal elements of the covariance matrices will reflect the 
variance in individual parameter estimates, while off-diagonal 
elements reflect the covariance between parameter estimates. 
The overall sum of squared estimation errors (SSEE) can be 
obtained by combining the estimation error bias and estimation 
variance information as  
 

( ) { }
( ) { }

ˆ, , , ˆ ,

ˆ,

ˆ

ˆ

T
xh k xh k xh k xh k

T
k k k z k

SSEE x x x tr P

SSEE z z z tr P

= +

= +

ɶ ɶ

ɶ ɶ
 (16) 

 

where tr{ ●} represents the trace (sum of the diagonal elements) 
of the matrix. In this paper, theoretical values for each error 
component will be derived assuming steady-state, open-loop 
(u = 0) operating conditions. First, the estimation error bias is 
derived, followed by a derivation of the estimation variance. 
 

Estimation Error Bias. The estimation error biases, 

kxhx ,
~  and 

kz~ , can be analytically derived for an arbitrary health 

parameter vector, h, at steady-state operating conditions. This is 
done taking advantage of the following expected value 
properties at steady-state open-loop operating conditions  
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where the subscript “ss” denotes steady-state operation. By 
taking expected values of Eq. (2), xss, yss and zss can be written 
as functions of the health parameter vector h 
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Next, by taking expected values of both sides of Eq. (11), the 
expected value of 

kxqx ,ˆ  can be obtained as a function of yss: 
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Then, making the substitution ( )( )hMLAICyss +−= −1  given in 

Eq. (19), the expected steady-state value of 
kxqx ,ˆ  can be written 

as a function of h 
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The steady-state augmented state estimation error bias can then 
be found, and partitioned into error bias information for the 
original state vector, 

ssx~ , and the health parameter vector, 
ssh

~ , 

by combining Eqs. (12), (14), (18) and (22) to yield  
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(23) 

The steady-state auxiliary parameter estimation error bias can 
also be derived by combining Eqs. (12), (14), (20) and (22) to 
yield 
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(24) 

 
The estimation error bias equations given in Eqs. (23) and 

(24) are functions of an arbitrary health parameter vector, h. As 
such they are representative of the parameter estimation error 
biases in a single engine, at a given point in its lifetime of use 
where its deterioration is represented by the health parameter 
vector h. The average sum of squared estimation error biases 
across a fleet of engines can be calculated as 
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where the matrix Ph, defined as [ ]ThhE , reflects a priori or 

historical knowledge of the covariance in the health parameters 
across all engines. If available, it can be used to predict the sum 
of squared estimation errors biases as shown in (25) and (26). 
 

Estimation Variance. Next, derivations are presented 
for the augmented state estimate and auxiliary parameter 
estimate covariance matrices, 

khx
P

,ˆˆ
 and 

kzP ,ˆ
respectively. These 

matrices will be calculated as a function of the reduced-order 
state vector estimation covariance matrix,

kqxP ,ˆˆ
, which is 

defined as  
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where the vector εxq,k is defined as the residual between 

kxqx ,ˆ  at 

time k and its expected value. Since [ ] ssxqkxq xxE ,, ˆˆ = , εxq,k can 

be obtained by subtracting Eq. (21) from Eq. (11)  
 

( )

( )( )

( )( ) ( )

,

,

, , ,

, ,

, 1 , 1

ˆ

, ,

ˆ

, 1 ,

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

xq k

xq ss

xq k xq k xq k

xq k xq ss

xq xq k k xq xq xq k

x

xq xq ss ss xq xq xq ss

x

xq xq xq xq k xq ss k ss

x E x

x x

A x K y C A x

A x K y C A x

A K C A x x K y y

ε

− ∞ −

∞

∞ − ∞

 = −  

= −

= + −

− + −

= − − + −

…
���������������

���������������

 
 

(28) 

Making the substitutions 
ssxqkxqkxq xx ,1,1, ˆˆ −= −−ε , and 

sskk yyv −=  yields 

 

( ), , 1xq k xq xq xq xq k kA K C A K vε ε∞ − ∞= − +  (29) 

 
The estimation covariance matrix 

kqxP ,ˆˆ
 is then calculated as 
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The substitutions [ ] 1,ˆˆ1,1, −−− = kqx
T

kxqkxq PE εε , and [ ] RvvE T
kk =  can 

be made in the above equation. Since εxq,k-1 and T
kv are 

uncorrelated, the substitution [ ] [ ] 01,1, == −−
T

kxqk
T
kkxq vEvE εε  can 

also be made, producing  
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+
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At steady-state operating conditions

kqxkqx PP ,ˆˆ1,ˆˆ =− . Making this 

substitution in (31) produces the following Ricatti equation 
which can be solved for

kqxP ,ˆˆ
: 
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xq xq xq xq xq xqxq k xq k
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+
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It should be noted that 

kqxP ,ˆˆ
 obtained by solving (32) will be 

identical to P∞ produced via Eq. (9) if the system’s actual state 
process noise covariance is identical to the Qxq assumed in the 
design of the Kalman filter. However, Q is often treated as a 
Kalman filter design parameter to provide acceptable dynamic 
response. For the purpose of this derivation, we have assumed a 
steady-state operating condition where the state variables and 
health parameters are invariant, and thus the actual system 
process noise is zero (i.e., wxh,k = 0). In this case 

kqxP ,ˆˆ
 will not 

equal P∞. Once 
kqxP ,ˆˆ
 is obtained, it can be used to calculate 

khx
P

,ˆˆ
, the covariance of 

kxhx ,ˆ , which is defined as 

[ ]( ) [ ]( )[ ]T
kxhkxhkxhkxh xExxExE ,,,, ˆˆˆˆ −−  
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ˆ ˆ ˆ,*† *†ˆ ,

0 0

0 0

T

xq kxh k

I I
P P

V V

   
=    
   

 (33) 

 
The augmented state vector estimation covariance given in Eq. 
(33) can be partitioned into covariance information for the 
original state vector, 

kxP ,ˆ
 (upper left corner of the

khx
P

,ˆˆ
 matrix), 

and the health parameter vector, 
kh

P
,ˆ

 (lower right corner of the 

khx
P

,ˆˆ
 matrix)  

 

ˆ,
ˆˆ ,

ˆ,

x k

xh k
h k

P
P

P

 
=  
  

⋯

⋯
 (34) 

 
The 

kqxP ,ˆˆ
 matrix from Eq. (32) can also be used to calculate 

kzP ,ˆ
, the covariance in the estimation of zk, which is equivalent 

to [ ]( ) [ ]( )[ ]T
kkkk zEzzEzE ˆˆˆˆ −−  

 
*† *†

ˆ ˆˆ, ,

T

z k xq kP F NV P F NV   =      (35) 

 
The variance in the estimates 

kxhx ,ˆ  and 
kẑ  can be obtained 

from the diagonals of the covariance matrices produced by (33) 
and (35) respectively.  
 

Sum of Squared Estimation Errors. Once Eqs. (25), 
(26), (33) and (35) are obtained, they may be used to 
analytically calculate the mean sum of squared estimation 
errors over all engines by combining the respective estimation 
error bias and estimation variance information as previously 
shown in Eq. (16). The mean augmented state vector sum of 
squared estimation errors, ( )fleetxhxSSEE ,ˆ , and the mean 

auxiliary parameter vector sum of squared estimation errors, 
( )fleetzSSEE ˆ , become 

 

( ) { }
{ }

( ) { }
{ }

2
ˆ, , ˆ ,

ˆˆ ,

2
ˆ,

ˆ,

ˆ

ˆ

xh fleet xh fleet xh k

T
xh h xh xh k

fleet fleet z k

T
z h z z k

SSEE x x tr P

tr G P G P

SSEE z z tr P

tr G P G P

= +

= +

= +

= +

ɶ

ɶ

 (36) 

 
If required, a weighted sum approach can be applied to 

normalize the contributions of individual auxiliary parameter 
estimation errors. This is often necessary as there may be 
several orders of magnitude difference between the auxiliary 
parameters of interest. A weighted sum approach prevents 
domination by individual parameters. In this study a diagonal 

auxiliary parameter weighting matrix, Wz, is applied based on 
the inverse of auxiliary parameter variance (obtained from the 
main diagonal of the auxiliary parameter covariance matrix, Pz) 

 

( ) ( )1 1

1

,11

,

0 0

0 0

0 0

T

z h

z

z

z ii

P F I A L N P F I A L N

P

W

P

− −

−

   = − + − +
   

 
 =  
 
 

⋱

 (37) 

 
Wz is then applied to calculate of a “weighted” sum of auxiliary 
parameter squared estimation errors given as 

 

( ) { }ˆ,ˆ T
fleet z z h z z kWSSEE z tr W G P G P = +   (38) 

 
From Eqs. (23), (24), (33) and (35) it can be observed that 

both bias and variance are affected by the selection of the 
transformation matrix, V*. The sum of squared estimation error 
terms derived in this section give rise to an optimization 
problem: selecting V* to minimize the squared estimation error 
in the Kalman filter produced parameter estimates. This could 
include health parameter estimates, auxiliary parameter 
estimates, or a combination of parameters. Although there is no 
known closed form solution for optimally selecting the V* 
matrix to satisfy the objective of minimizing estimation errors, 
a multi-parameter iterative search method has been developed 
to perform this task, and will be described in the next section. 
 
Optimal Transformation Matrix Selection  

Prior to initiating the search for an optimal V*, specific 
system design information must be defined or obtained. This 
includes:  

 
• Specifying the auxiliary parameters to be estimated  
• Generating system state space equations at a fleet 

average (50% deteriorated) engine trim point 
• Defining measurement noise covariance matrix, R  
• Defining augmented state process noise covariance 

matrix, Qxh  
• Defining fleet average health parameter covariance, Ph 
 
Some additional clarification is provided regarding the 

selection of Ph and Qxh as the distinction between these two 
covariance matrices may not be immediately obvious. Ph 
defines the expected health parameter covariance across all 
engines. It may be based on past knowledge gained from engine 
gas path analysis programs and/or historical studies of engine 
module performance deterioration. Conversely, Qxh defines the 
expected process noise covariance in the state variables and 
health parameters of an individual engine, at a single discrete 
time step, k. The selection of Qxh will directly impact the 
dynamic response and the variance of the estimates generated 
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by the Kalman filter, and to a large extent Qxh is treated as a 
design parameter.  

After the necessary system information has been obtained, 
the search for an optimal transformation matrix to minimize the 
Kalman filter sum of squared estimation errors can commence. 
This is performed using the lsqnonlin function of the Matlab 
Optimization Toolbox. This function applies an iterative search 
to find the least squares solution of a user-specified 
multivariable optimization problem. A flow chart depicting the 
steps in this optimal iterative search is shown in Figure 1, and a 
further description of each step is given below. 

 
1. Upon startup, an initial random guess of V* is 

generated. It is selected such that the matrix Frobenius 
norm * 1

F
V = . This requirement is applied to help 

prevent convergence to a poorly scaled solution. 
2. Construct reduced order state-space model, (Eq. (7)). 
3. Formulate Kalman filter  

a. Calculate estimation covariance matrix, P∞ (Eq. (9))  
b. Calculate the Kalman gain matrix, K∞, (Eq. (10)) 

4. Calculate sum of squared estimation errors (Eq. (36)), 
or weighted sum of squared estimation errors (Eq. (38)) 

5. On each iteration the change in SSEE (or WSSEE) 
relative to the previous iteration is assessed to 
determine if convergence within a user specified 
tolerance has been achieved.  
a. If converged, skip step 6 and proceed to step 7 
b. If not converged, proceed to step 6 to update V* 

6. V* is updated via the Matlab lsqnonlin function, again 
requiring that * 1

F
V = , and the process returns to step 2 

7. Upon convergence, the optimization routine returns the 
optimal value of V*, and ends. 

 
StartStart

1. Generate initial guess for V *1. Generate initial guess for V *

2. Construct reduced order
state-space equations

2. Construct reduced order
state-space equations

5. Converged
?

5. Converged
?

3. Formulate Kalman filter
matrices (P

∞
and K

∞
)

3. Formulate Kalman filter
matrices (P

∞
and K

∞
)

4. Calculate (weighted) sum of 
squared estimation errors

4. Calculate (weighted) sum of 
squared estimation errors

7. Return optimal V *7. Return optimal V *

EndEnd

6. Update V * guess through
multi-variable gradient search
6. Update V * guess through

multi-variable gradient search

No

Yes

 
Figure 1. Flowchart of V* Iterative Optimal Search 

 
Experience has shown that the transformation matrix 

returned by the optimization routine is not unique—different 

matrices can be found which produce a global minimum of the 
objective function. Experience has also shown that the 
optimization routine will usually return a V* matrix which 
satisfies, or nearly satisfies (i.e. within 5%), the global 
minimum of the objective function. However, in order to guard 
against potential convergence to a local minimum, it is prudent 
to run the optimization routine multiple times, each time 
starting with a different initial guess for V*. This is only to 
assure the designer that the global minimum is achieved, not to 
produce a consistent V*. It should be emphasized that the 
optimal search for V* is only conducted off-line during the 
estimator design process. This calculation is not conducted as 
part of the on-line real-time Kalman filter implementation, and 
thus places no additional computational burden upon it. 

TURBOFAN ENGINE EXAMPLE 
A linearized cruise operating point extracted from the 

NASA Commercial Modular Aero-Propulsion System 
Simulation (C-MAPSS) high-bypass turbofan engine model [9] 
is used to evaluate the new systematic tuner selection 
methodology. The linear model has two state variables, ten 
health parameters, and three control inputs, all shown in 
Table 1. The model’s seven sensed outputs, and corresponding 
sensor noise standard deviation, are shown in Table 2. The 
auxiliary output parameters of interest to be estimated are 
shown in Table 3. The linear model is used as the truth model 
for this application example. The model is run open-loop, so all 
control inputs remain at 0, i.e., they do not deviate from the 
trim value for the linear model and no actuator bias is present. 
Deviations in all ten health parameters are assumed to be 
uncorrelated, and randomly shifted from their trim conditions 
with a standard deviation of ±0.02 (±2%). Since a parameter’s 
variance is equal to its standard deviation squared, the health 
parameter covariance matrix, Ph, is defined as a diagonal 
matrix with all diagonal elements equal to 0.0004.  

Next, the estimation accuracy of the systematic approach 
for selecting Kalman filter tuning parameters will be compared 
to the conventional approach of selecting a sub-set of health 
parameters to serve as tuners (the seven health parameters 
denoted with “*” in Table 1), and the singular value 
decomposition approach to tuner selection introduced by Litt in 
Ref. [4]. Table 4 shows a comparison of the theoretically 
predicted estimation errors (squared bias, variance, and total 
squared error) and experimentally obtained squared estimation 
errors for each of the three tuner selection approaches. T40 and 
T50 estimation errors are shown in squared degrees Rankine, 
and Fn and SmLPC estimation errors are shown in squared 
percent net thrust and squared percent stall margin respectively. 
The experimental results were obtained through a Monte Carlo 
simulation analysis where the health parameters varied over a 
random distribution in accordance with the covariance matrix, 
Ph. The test cases were concatenated to produce a single time 
history input which was provided to the C-MAPSS linear 
discrete state space model given in Eq. (2), with an update rate 
of 15 ms. Each individual health parameter test case lasted 30 s. 
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Table 1. State variables, health parameters, and actuators 

State variables Health parameters Actuators 

Nf – fan speed Fan efficiency Wf – fuel flow 
Nc – core speed Fan flow capacity* VSV – variable stator vane 
 LPC efficiency* VBV –variable bleed valve 
 LPC flow capacity  
 HPC efficiency*  
 HPC flow capacity*  
 HPT efficiency*  
 HPT flow capacity*  
 LPT efficiency  
 LPT flow capacity*  
* Health parameters selected as tuners in conventional estimation approach, 
(identical to sub-set of health parameters selected as tuners in Ref. [4]) 
 
Table 2. Sensed outputs and standard deviation as percent 

of operating point trim values 

Sensed output Standard deviation (%) 

Nf – fan speed 0.25% 

Nc – core speed 0.25% 

P24 – HPC inlet total pressure 0.50% 
T24 – HPC inlet total temperature 0.75% 
Ps30 – HPC exit static pressure 0.50% 
T30 – HPC exit total temperature 0.75% 
T48 – Exhaust gas temperature 0.75% 

 
Table 3. Estimated auxiliary parameters 

 Auxiliary parameter  

 T40 – Combustor exit temperature  

 T50 – LPT exit temperature  

 Fn – Net thrust 
SmLPC – LPC stall margin 

 

 
At the completion of each 30 s test case, the health parameter 
vector input instantaneously transitioned to the next test case. A 
total of 375 30 s test cases were evaluated, resulting in an 
11,250 s input time history. Three separate Kalman filters were 
implemented using the three tuner selection approaches. The 
experimental estimation errors were determined by calculating 
the mean squared error between estimated and actual values 
during the last 10 s of each 30 s test case. The error calculation 
is based on only the last 10 s so that engine model outputs and 
Kalman estimator outputs have reached a quasi-steady-state 
operating condition prior to calculating the error. This ensures 
that the experimental results are consistent with the 
theoretically predicted estimation errors which were derived 
assuming steady-state operation.  

From Table 4 it can be seen that the theoretically predicted 
and the experimentally obtained squared estimation errors 
exhibit good agreement. If the number of random test cases 
were increased to a suitably large number, it is expected that 
the theoretical and experimental results would be identical. It 
can also be seen that all three estimators are able to produce 
unbiased estimates of the combustor exit temperature, T40; 

however, their estimates of LPT exit temperature, T50, net 
thrust,  Fn,  and  LPC  stall  margin,  SmLPC,  are  biased.  The 
encouraging finding is that the new systematic approach to 
tuner selection significantly reduces the overall mean squared 
estimation error compared to the other two approaches. 
Relative to the conventional approach of tuner selection the 
experimental mean squared estimation errors in T40, T50, Fn 
and SmLPC are reduced 76%, 82%, 80% and 63%, 
respectively. It can also be observed that the SVD tuner 
selection approach, which is designed to reduce the estimation 
error bias, does in fact reduce the sum of squared biases 
relative to the subset of health parameters approach. However, 
the SVD approach is also found to increase the estimation 
variance, which contributes to its overall mean squared 
estimation error. 

A visual illustration of the effect that tuner selection has on 
Kalman filter estimation accuracy can be seen in Figures 2, 3, 4 
and 5, which show actual and estimated results for the auxiliary 
parameters T40, T50, Fn and SmLPC respectively. Each plot 
shows a 300 s segment of the evaluated test cases. The step 
changes that can be observed in each plot every 30 s 
correspond to a transition to a different health parameter vector. 
True model auxiliary parameter outputs are shown in black, and 
Kalman filter estimates are shown in red. In each figure the 
information is arranged top to bottom according to tuner 
selection based upon: a) a subset of health parameters; b) 
singular value decomposition; and c) the new systematic 
selection strategy. The information shown in these figures 
corroborates the information in Table 4; namely all three tuner 
selection approaches produce unbiased estimates of T40 
(Figure 2), while the systematic tuner selection strategy yields a 
noticeable reduction in the total squared estimation error 
(squared bias plus variance) of all four auxiliary parameters. 

 
Table 4.  Auxiliary parameter squared estimation errors 

Tuners Error  
T40 
(°R) 

T50 
(°R) 

Fn 
(%) 

SmLPC 
(%) 

Theor. sqr. bias 0.00 561.76 3.84 3.28 

Theor. variance 74.76 29.65 0.48 0.34 

Theor. sqr. error 74.76 591.41 4.31 3.62 

Subset of 
health 

parameters 
Exper. sqr. error 74.90 583.29 4.27 3.60 

Theor. sqr. bias 0.00 512.46 4.05 5.28 

Theor. variance 65.99 67.21 0.80 1.31 

Theor. sqr. error 65.99 579.67 4.86 6.59 

 
SVD tuner 
selection 

 
Exper. sqr. error 66.20 579.39 4.98 6.76 

Theor. sqr. bias 0.00 87.81 0.66 0.95 

Theor. variance 17.49 18.55 0.13 0.35 

Theor. sqr. error 17.49 106.35 0.79 1.30 

Systematic 
tuner 

selection 
Exper. sqr. error 17.61 106.54 0.86 1.35 
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Figure 2. T40 estimation (tuner comparison) 
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Figure 3. T50 estimation (tuner comparison) 

 
Comparison with Maximum a Posteriori Estimation  

The presented systematic tuner selection strategy 
minimizes the mean squared error of the on-line estimator at 
steady-state operating conditions, taking advantage of prior 
knowledge of engine health parameter distributions. As such it 
is somewhat analogous to the maximum a posteriori (MAP) 
estimation method which is commonly applied for ground-
based aircraft gas turbine engine gas path analysis [5,6]. This 
leads to the question, how does the on-line Kalman filter 
estimation accuracy compare to MAP estimation accuracy? 
Prior to making this comparison the mathematical formulation 
of the MAP estimator is briefly introduced. Here a steady-state 
model of the measurement process in the following form is 
applied 

k k ky Hh v= +  (39) 
 
where the matrix H relates the effects of the health parameter 
vector, h, to the sensed measurements, y. From Eq. (19), it can 

be seen that H is equivalent to ( ) MLAIC +− −1 . The 

maximum a posteriori (MAP) estimator follows the closed 
form expression 
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Figure 4. Fn estimation (tuner comparison) 
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Figure 5. SmLPC estimation (tuner comparison) 

 

( )1 1 1ˆ T T
k h kh P H R H H R y− − −= +  (40) 

 
The MAP estimator is capable of estimating more 

unknowns than available measurements due to the inclusion of 
a priori knowledge of the estimated parameter covariance, Ph. 
However, the MAP estimator, unlike a Kalman filter, is not a 
recursive estimator and does not take advantage of past 
measurements to enhance its estimate at the current time step. 
Furthermore, the MAP estimator only considers a static 
relationship between system state variables and measured 
outputs—it does not consider system dynamics. Because of 
these differences a Kalman estimator with optimally selected 
tuning parameters should outperform the MAP estimator. 
However, under steady-state conditions, with minimal sensor 
noise the two estimation approaches should produce similar 
results. To test this theory, a MAP estimator was designed and 
its estimation accuracy was compared to a Kalman filter with 
tuning parameters optimally selected to minimize the 
estimation errors in the health parameter vector h. First, the two 
estimators were designed and evaluated using the original 
sensor noise levels shown in Table 2. Next, the sensor noise



 

11 

Table 5. Health parameter % squared estimation errors (nominal noise) 
Estimator Error type h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 Sum 

Theor. squared bias 1.26 1.48 2.28 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00 

Theor. variance 0.73 0.19 0.80 0.45 0.40 0.68 0.21 0.21 0.34 0.08 4.09 

Theor. squared error 2.00 1.67 3.07 1.66 0.40 0.68 0.96 0.21 2.32 3.14 16.09 

Kalman 
filter 

Exper. squared error 1.82 1.60 2.77 1.59 0.41 0.68 0.97 0.21 2.13 3.15 15.31 

Theor. squared bias 2.42 1.75 3.53 1.90 0.47 0.96 1.00 0.16 2.47 3.17 17.81 

Theor. variance 0.22 0.27 0.16 0.64 0.69 0.71 0.36 0.36 0.17 0.09 3.68 

Theor. squared error 2.63 2.02 3.69 2.54 1.16 1.67 1.36 0.52 2.64 3.26 21.48 

MAP 
estimator 

Exper. squared error 2.52 1.89 3.44 2.45 1.14 1.57 1.34 0.51 2.49 3.24 20.60 

 
Table 6. Health parameter % squared estimation errors (reduced noise) 

Estimator Error type h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 Sum 

Theor. squared bias 1.26 1.48 2.28 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00 

Theor. variance 0.02 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.10 

Theor. squared error 1.29 1.48 2.30 1.22 0.01 0.02 0.74 0.00 1.98 3.06 12.10 

Kalman 
filter 

Exper. squared error 1.13 1.41 1.97 1.16 0.01 0.02 0.75 0.00 1.79 3.08 11.31 

Theor. squared bias 1.26 1.48 2.28 1.22 0.00 0.00 0.74 0.00 1.97 3.06 12.00 

Theor. variance 0.03 0.00 0.04 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.13 

Theor. squared error 1.30 1.48 2.32 1.22 0.01 0.02 0.74 0.00 1.99 3.06 12.14 

MAP 
estimator 

Exper. squared error 1.14 1.41 1.98 1.17 0.01 0.02 0.75 0.00 1.79 3.08 11.34 

 
levels were set to 1/20th of their original levels, the estimators 
were re-designed, and the comparison was repeated. Monte 
Carlo simulation evaluations as previously described were 
applied (i.e., 375 random health parameter vectors, 30 s in 
duration, with estimation accuracy calculations based upon the 
last 10 s of each 30 s test case). Theoretical and experimental 
estimation errors are shown in Table 5 and Table 6 for the 
original noise and reduced noise levels, respectively. At 
original noise levels the Kalman estimator is able to produce 
smaller estimation errors. However, at the reduced noise level 
the two estimation approaches are found to be nearly identical. 
This comparison validates that the Kalman estimation approach 
is indeed producing a minimum mean squared estimation error 
as intended, while providing the capability to support real-time 
on-line estimation under dynamic operating scenarios. 
 
DISCUSSION 

While the systematic tuner selection approach presented 
here appears promising for on-line Kalman filter based 
parameter estimation applications, there are several practical 
considerations which need to be assessed when applying such a 
technique. The optimization routine attempts to minimize the 
overall squared estimation error—both bias and variance—
under steady-state operating conditions. The minimization of 
the estimation variance in particular can come at the expense of 
dynamic responsiveness of the Kalman filter. To illustrate this 
consider the time history plots of actual versus estimated T40 
shown in Figure 6. The top plot shows Kalman filter estimation 

results using a tuning parameter vector systematically selected 
to minimize the error in four auxiliary parameters (T40, T50, 
Fn and SmLPC) as presented in the previous section. The 
bottom plot shows Kalman filter estimation results using a 
tuning parameter vector systematically selected to minimize the 
estimation error in T40 only. At time 100 s a step change in the 
health parameter input vector is introduced into the engine 
model; this allows the dynamic response of the two estimators 
to be compared. It can be observed that T40 estimation 
variance in the bottom plot is reduced, as is the mean steady-
state estimation error (> 300 s). This is not surprising since one 
would generally expect improved results when optimizing to 
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Figure 6. Illustration of tuner impact on estimator response 
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minimize the error in a single parameter, as opposed to multiple 
parameters. However, the estimator shown in the bottom plot 
does require a significantly longer time to reach steady-state 
convergence. Conversely, the estimator designed to minimize 
the steady-state error in four auxiliary parameters (top plot) is 
unable to place as much emphasis on T40 estimation variance 
reduction, but it is able to track dynamic changes in T40 more 
rapidly. This example illustrates the inter-dependence between 
estimation variance and responsiveness. Therefore, it is prudent 
for a designer to evaluate the Kalman filter to ensure that it 
tracks engine dynamics acceptably. If the dynamic response is 
unacceptable, the optimization routine can be re-run placing 
more weight on estimation error bias reduction, and less weight 
on variance reduction. 

All results presented in this paper are based on a turbofan 
engine linear state-space model at a single operating point. 
While this linear assessment enables experimental validation of 
theoretical predictions, it is not representative of actual aircraft 
gas turbine engine operation which is a transient non-linear 
system operating over a broad range of operating conditions. In 
order for the presented approach to be applicable it would need 
to be able to produce an optimal set of tuning parameters, not 
just at a single operating point but rather a globally optimal 
tuning parameter vector universally applicable over the range 
of operating conditions that an engine is expected to 
experience. A potential approach to selecting a single “globally 
optimal” tuning parameter vector is to modify the optimization 
routine to minimize the combined estimation error over 
multiple engine operating points such as takeoff, climb and 
cruise. This would be a straightforward modification to the 
Matlab optimization routine, but it would increase the 
computational time required to calculate the result. Since the 
systematic tuner selection process is only envisioned to be done 
once during the system design process, this will not impact the 
on-line execution speed of the Kalman filter. It is anticipated 
that the application of globally optimal tuners will result in 
some estimation accuracy degradation relative to tuners 
optimized for individual operating points, although this has not 
yet been verified or quantified. 

 
CONCLUSIONS 

A systematic approach to tuning parameter selection for 
on-line Kalman filter based parameter estimation has been 
presented. This technique is specifically applicable for the 
underdetermined aircraft engine parameter estimation case 
where there are fewer sensor measurements than unknown 
health parameters which will impact engine outputs. It creates 
and applies a linear transformation matrix, V*, to select a vector 
of tuning parameters which are a linear combination of all 
health parameters. The tuning parameter vector is selected to be 
of low-enough dimension to be estimated, while minimizing the 
mean-squared error of Kalman filter estimates. The multi-
parameter iterative search routine applied to optimally select V* 
was presented. Results have shown that while the 
transformation matrix returned by the optimization routine is 

not unique (different matrices can be found which produce a 
global minimum of the objective function), the routine is 
effective in returning a transformation matrix which is optimal, 
or near optimal, regardless of its initial starting guess of the 
matrix. The efficacy of the systematic approach to tuning 
parameter selection was demonstrated by applying it to 
parameter estimation in an aircraft turbofan engine linear point 
model. It was found to significantly reduce mean squared 
estimation errors compared to the conventional approach of 
selecting a subset of health parameters to serve as tuners. In 
some parameters the mean squared estimation error reduction 
was found to be over 80%. These estimation improvements 
were theoretically predicted and experimentally validated 
through Monte Carlo simulation studies.  

The systematic approach to Kalman filter design is 
envisioned to be applicable for a broad range of on-board 
aircraft engine model-based applications which produce 
estimates of unmeasured parameters. This includes model-
based controls, model-based diagnostics, and on-board life 
usage algorithms. It is also envisioned to have benefits for 
sensor selection during the engine design process, specifically 
for assessing the performance estimation accuracy benefits of 
different candidate sensor suites. Areas for future work include 
extending the technique to produce a tuning parameter vector 
optimal over a range of operating conditions, and evaluating 
the technique on a non-linear engine model, under both steady-
state and transient operating conditions.  
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